Elevated thalamic low-voltage-activated currents precede the onset of absence epilepsy in the SNAP25-deficient mouse mutant coloboma.

نویسندگان

  • Yi Zhang
  • Alexander P Vilaythong
  • Daniel Yoshor
  • Jeffrey L Noebels
چکیده

Recessive mutations in genes encoding voltage-gated Ca2+ channel subunits alter high-voltage-activated (HVA) calcium currents, impair neurotransmitter release, and stimulate thalamic low-voltage-activated (LVA) currents that contribute to a cortical spike-wave epilepsy phenotype in mice. We now report thalamic LVA current elevations in a non-Ca2+ channel mutant. EEG analysis of Coloboma (Cm/+), an autosomal dominant mutant mouse lacking one copy of the gene for a synaptosomal-associated protein (SNAP25) that interacts with HVA channels, reveals abnormal spike-wave discharges (SWDs) in the behaving animal. We compared the biophysical properties of both LVA and HVA currents in Cm/+ and wild-type thalamic neurons and observed a 54% increase in peak current density of LVA currents evoked at -50 mV from -110 mV in Cm/+ before the developmental onset of seizures relative to control. The midpoint voltage for steady-state inactivation of LVA currents in Cm/+ was shifted in a depolarized direction by 8 mV before epilepsy onset, and the mean time constant for decay of LVA Ca2+ currents at -50 mV was also prolonged. No significant differences were found in recovery from inactivation of LVA currents or in HVA current densities and kinetics. Our data demonstrate that a non-Ca2+ channel subunit gene mutation leads to potentiated thalamic LVA currents that precede the appearance of SWDs and that altered somatodendritic HVA currents are not required for abnormal thalamocortical oscillations. We suggest that presynaptic release defects shared by these mutants lead to postsynaptic LVA excitability increases in thalamic pacemaker neurons that favor rebound bursting and absence epilepsy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurobiology of Disease Genetic Enhancement of Thalamocortical Network Activity by Elevating 1G-Mediated Low-Voltage-Activated Calcium Current Induces Pure Absence Epilepsy

Absence seizures are a leading form of childhood epilepsy. Human and mouse P/Q-type calcium channel gene mutations initiate a complex absence epilepsy and ataxia phenotype, and in mice, secondarily elevate neuronal low-voltage-activated T-type calcium currents. These currents influence thalamocortical network activity and contribute to the generation of cortical spike-wave discharges (SWDs) ass...

متن کامل

T-type Ca2+ channels in thalamic sensory gating and affective Disorders

Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...

متن کامل

T-type Ca2+ channels in thalamic sensory gating and affective Disorders

Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...

متن کامل

Mutations in high-voltage-activated calcium channel genes stimulate low-voltage-activated currents in mouse thalamic relay neurons.

Ca2+ currents, especially those activated at low voltages (LVA), influence burst generation in thalamocortical circuitry and enhance the abnormal rhythmicity associated with absence epilepsy. Mutations in several genes for high-voltage-activated (HVA) Ca2+ channel subunits are linked to spike-wave seizure phenotypes in mice; however, none of these mutations are predicted to increase intrinsic m...

متن کامل

Gene-environment interactions affect long-term depression (LTD) through changes in dopamine receptor affinity in Snap25 deficient mice.

Genes and environmental conditions interact in the development of cognitive capacities and each plays an important role in neuropsychiatric disorders such as attention deficit/hyperactivity disorder (ADHD) and schizophrenia. Multiple studies have indicated that the gene for the SNARE protein SNAP-25 is a candidate susceptibility gene for ADHD, as well as schizophrenia, while maternal smoking is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 22  شماره 

صفحات  -

تاریخ انتشار 2004